15:15-16:45 Session IV (Chairperson: KOSEKI) Advanced Technologies for Land Transportation

15:15-15:40 History and state-of-the-arts of electric traction systems for rail-guided transports (KOSEKI, UOT) 軌道交通の電気駆動の技術史と動向

15:40-16:05 Future EV with Choco-Choco charge (HORI, UOT) ちょこちょこ充電する未来の電気自動車

Panel discussion: 16:10-16:45

- (1) Dr. Hayashiya (JR-East): Are railways able to be as useful as automobiles? Are automobiles able to be as ecological as railways?鉄道は自動車ほど魅力的になれるか?自動車は鉄道ほど環境負荷の小さなものになるか?
- (2)Mr. Teratani (TOYOTA): Expansion of HV, PHEV and EV for Sustainable Mobility and Society?持続可能な交通・社会のためのハイブリッド車、燃料電池車、電気自動車の展開

International Workshop on Sustainable Transportation and Energy

History and state-of-the-art of electric traction systems for rail-guided public transports

Prof. Z. P. Yang
Beijing Jiaotong University, China
Takafumi KOSEKI
Department of Electrical Engineering
and Information systems,
School of Engineering
The University of Tokyo
takafumikoseki@ieee.org,
http://www.takafumikoseki.blogspot.com/

Introduction

- 1. Electric traction for automobile and railway
- 2. Regenerative brake and energy management
- 3. High Speed ground Transportation World trend R & D in China

Large transportation market in Tokyo area

Birth of electric traction and its strong points

Click here!

Click here!

Electric vehicle in 19C (The First Porsche)

The first electric train demonstrated by W. Siemens in Berlin in 1879

Power supply to early electric trains II Realization of 210km/h in 1903

Click here!

The Era of AC-drive: substantial role of power electronics Commutator motor and ASM (DB 120type in 1987)

Click here!

Regeneration: Pure Electric Brake

Energy storage and regenerative brakes Zushi fly-wheel post at Keikyu

Click here!

25kWh, 3MW in August 1998 + 12% more efficient usage of regenerated energy

Trolley less electric transports

Click here!

Bombardier catenary-free tram

Click here!

Shanghai Aowei Technol ogy Devel opment Ltd.

人と環境にやさしい交通を Technology Development Ltd.
めざ**が**協議会**H**hterhational Workshop on Sustainable Transportation and Energy T. KOSEKI

R&D for intercity high speed ground transports

Click here!

Source: Wikipedia—Schnellfahrstrecke

Japanese SHINKANSEN

Tokaido 270km/h 515.4km 1964-Sanyo 300km/h 553.7km 1972-Tohoku 270km/h 593.1km 1982-Joetsu 225km/h 269.5km 1982-Hokuriku Kyushu

.....

Click here!

Click here!

cke ser

Source: Wikipedia--Schnellfahrstrecke

N700 32% reduction of energy compared with series: simultaneous speed-up and energy saving

EXPORTED by Hitachi: BR Class 395

Click here!

For London Olympic in 2012: Olympic Javelin Shuttle St. Pancras International Station---Ebbsflat International Sta. Shuttle operation with 6 Min headway 2009年から ロンドンーケント間を High Spped 1 (旧 Channel Tunnel rail Link)経由で運行 AC25kB 高速新線は225km/h走行、 直流750V在来線区間は160km/h走行 日立 笠戸工場で製作

French TGV

LGV 1840km

1981 LGV SE 260km/h 1983 270km/h operation

Click here!

Paris-Lille 300km/h operation 2007 LGV Est européenne 301km 320km/h operation World speed record 3rd April 2007 2M3T LGV-Est 574.8km/h TGV/ICE

Automotrice à grande vitesse

Click here!

R & D for 360km/h operation by Alsthom IGBT inverter Permanent magnet synchronous motor distributed drive June 2008- Checo Velim tesst line 7car train 210km/h test-operation for 4 months

December 2008- 360km/h trial at LGV Est

15

Source: Wikipedia--AVG

HGST-market in China

The 6th Speed Up Lines

The main data comparison between China and Japan

Railway Data	China (2008)	Japan (2007)
Route length (km)	79687	27, 625
The ratio of electrified railway(%)	34. 6	63
The ratio of double track railway (%)	36. 2	41
Passenger traffic volume (billion person-km)	1461.9	384.4
Freight dispatch volumn(billion t-km)	3290. 4	22.4
High speed railway data	China (now)	Japan (now)
Existing line operation speed (km/h)	250	160
Maximum operation speed (km/h)	350	300
Maximum test speed (km/h)	394	443

Source: Prof. Z. P. Yang

The Railway Speedup of China

The 6th Speed Up

- The 6th large scale train speed up was done in China on 18th April 2007.
- Four types Chinese high speed trains (CRH series) were introduced for the existing lines for 200km/h operation.
- The 6th speed up was very successful, it has received considerable attention in the world.

Source: Prof. Z. P. Yang

The prototype high speed trains for **CRH** Series

Regina - ORH 1 (BSP)

1CE3 → CRH 3 (Tangshan)

Source: Prof Z P Yang

Shorter traveling time by the 6th speed up

Line	Section	Distance	Before the 6th speed up	Now	Shorter time
Jingha Line	Beijing~ Changchun	1,126 km	8 h 20 min	6 h 7min	2 h13min
	Beijing∼ Harbin	1,372 km	10 h30min	7 h 50min	2 h40min
Jinghu Line	Beijing~ Tianjin	137 km	1 h14min	1 h6min	8min
	Beijing~ Shanghai	1,463 km	11h58min	9 h59min	1 h59min
Jingguang Line	Beijingxi~ Wuhan	1,205 km	10h0min	8h22min	1h58min

Source: Prof. Z. P. Yang

The Characteristic of Beijing-Tianjin intercity railway, 2008

- Length of line is 120 km, the ratio of elevated bridge is 87%, the total line adopts ballastless track and jointless track;
- Simple catenary wire-supported overhead conduct system is adopted;
- The CRH2-300 and CRH3 EMU are applied, these amount is approximate 20;
- Maximum operation speed is 350km/h.

The current CRH EMUs in China

CRH1 (Baed on Bonbardier Regina)

CRH2 (Based on KHI E2-1000)

CRH3 (Based on Simens Velaro-E)

CRH5 (Based on Alston SM3)

Source: Prof. Z. P. Yang

Main technical parameters of CRH EMUs

Item	CRH1	CRH2		CRH3	CRH5	
Train Formation	5M3T	4M+4T 6M+2T 8M8T		4M4T	5M3T	
Fixed number of persons (person)	668	610 (long formation) 1230 (long formation) 630 (long formation & sleeper train)		557	622	
Operating speed (km/h)	250	250/350		350	250	
Test speed (km/h)	275	275/385		394.3	275	
Traction power (kW)	5500	4800/8200 (short formation) 9600 (long formation)		8800	5500	
Car body style	Stainles s steel	Aluminum alloy				
Axle load (t)	≤16	≤14	≤17	≤17		
Brake mode	Electro-pneumatic and regenerative brake					

Source: Prof. Z. P. Yang

High speed rail program in China

The China contribution and impaction for global high speed railway

- Because a large scale development in China, more and more counties are planning to build high speed railway, for example USA;
- Though Power-distributed EMU was established by Japan, owing to acceptance and adoption by China high-speed train, so this model maybe will be widely used in the world;
- The operation speed 350km/h is sampled and succeeded for the first time in China. At present, France is doing the same experiments.

Source: Prof. Z. P. Yang

Concluding remarks

- 1. Continuous power supply played significant roles in early growth of electric railway.
- 2. New technology for energy storage shall be a key for energy management in electric traction.
- 3. Environmental friendliness will be a key word for electric drives, especially for rail-guided public transports.
- 4. Electric High Speed Ground Transport will play significant roles in sustainable further growth all over the world, especially in Eastern Asian market including China.

Thank you for your attention!

Discussion I

Will electric automobiles be ecological transport mode like electric railways in future?

Will a novel way of use of electric cars and their limited performance change the modal split in preferable direction?

Discussion II

How large will be a desirable energy storage for personal cars?

What is the target in a long-term R & D by automobile manufacturers?

Discussion III

What is the substantial advantage of electric automobiles? Is it just more ECOLOGICAL?

Discussion IIIA

Electric installation will make automobiles substantially safer?

To what extent is it possible?

Discussion IV

What efforts are railway operators making to realize "attractive" rail-service competent to automobiles?

Will the efforts contribute to the realization of sustainable mobility ad society?

Discussion V

How do automobile engineers or TOYOTA observe such technical efforts of railway operators for realizing ATTRACTIVE rail transport service?